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Bethe approximation for a hydrophobic-polar random copolymer

M. Pretti
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I-10129 Torino, Italy
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A previous analysis of the configurational statistics of a lattice self-avoiding walk, based on the pair ap-
proximation of the cluster variation method~Bethe approximation!, is generalized to describe a random co-
polymer in dilute solution, in which monomers interact with one another and with the solvent. The phase
diagram is worked out numerically and the coil-globule transition is obtained. Entropy and internal energy in
the coil phase, as well as theQ point are evaluated analytically, by means of a Landau expansion of the
variational free energy. A detailed analysis is carried out for the case in which the only interaction present is an
attraction between monomers of one species. Such a model has been proposed in the literature to mimic a
random copolymer made up of hydrophobic and polar monomers in water solution, a physical system which is
believed to be relevant to understanding the behavior of proteins.
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I. INTRODUCTION

The Bethe approximation@1# is a common statistical me
chanical technique to study lattice systems. It improves u
the simple mean-field theory, by taking into account corre
tions between nearest neighbor~NN! sites, and can be refor
mulated with different points of view. By a simplified coun
ing of lattice states, it has been presented as a quasichem
approximation@2#. By a suitable truncation of the entrop
cumulant expansion it can be seen as the lowest step~pair
approximation@3,4#! of a hierarchy of approximations tha
takes into account correlations up to arbitrarily large cluste
and is known as the cluster variation method~CVM! @5#. The
pair approximation was first applied to lattice polymer sta
tics by Aguilera-Granja and Kikuchi, who treated the pro
lem of ~polydisperse! polymer solutions@6–8#, and obtained
several improvements over the classical Flory theory@9,10#.
More recently the pair approximation was generalized
treat the configurational statistics of a single self-avoid
walk ~SAW! in the grand canonical ensemble@11#, which is
the usual way to model a single linear polymer in soluti
@12,13#. In Ref. @11# the authors considered a semiflexib
polymer model, and noticed several improvements over
corresponding mean-field theory as well, in spite of the s
plicity of the pair approximation. In this paper we have t
purpose of extending this kind of approach to the case o
random copolymer in which monomers of the two spec
interact with one another and with the solvent, introduc
suitable approximations to treat the quenched disorder of
monomer sequence.

Copolymer models have attracted great attention in
latest years, especially in the case of monomer species
tinguished on the basis of their degree of hydrophilic
~hydrophobic-hydrophilic copolymers!, because of connec
tions to the protein folding problem. The importance of h
drophobicity to protein folding was shown by Dill@14#, who
suggested that the main driving force of the process was
tendency of polar~hydrophilic! amino acid monomers to
shield nonpolar~hydrophobic! monomers from the water en
vironment. Of course the formation of a peculiar nati
1063-651X/2002/66~3!/031803~11!/$20.00 66 0318
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structure needs also the presence of a particular sequen
amino acids and a randomly chosen sequence usually
not fold. Nevertheless, studying a particular case of
simple model treated in this paper~by a mean-field-like ap-
proach on a ‘‘spherical’’ lattice!, Dill obtained important
qualitative information about the folding process@15# and
the thermal stability@16# of globular proteins. Since then, th
so-called H-P~hydrophobic-polar! model has been exten
sively investigated from different points of view. Exact en
meration studies on finite~fixed! H-P sequences have bee
devoted to find the sequences that are likely to be good f
ers @17# or to determine the designability of native stat
@18#. More analytical investigations, based on the repl
theory, have been devoted to determine general propertie
the random H-P copolymer model, mainly in the presence
Gaussian disorder@19,20#. In Ref.@19# the authors found tha
in the case of weak hydrophobicity the ordinaryQ collapse
is replaced by an unusual first order collapse and that
entropy of the corresponding compact state is strongly
duced with respect to the ordinary collapsed phase. Mo
over, in Ref.@20# a replica symmetry breaking has been o
served, corresponding to a frozen state, in addition to
ordinary ~molten! compact state.

In this paper we shall mainly focus on theQ transition
and related properties, especially in comparison with the c
of a purely H homopolymer. As previously mentioned, t
model is quite general in principle, and includes bo
monomer-monomer and monomer-solvent interactio
Nonetheless, as observed by Dill@15#, it is possible to model
a H-P copolymer by just retaining an attractive interacti
energy between H monomers, neglecting all other inter
tions. In the framework of the Bethe approximation, we sh
present detailed numerical results for this simpler case,
though the analytical treatment is general. Due to the f
that pair correlations are taken into account exactly, we
serve a more ‘‘realistic’’ behavior of the model, which cou
not be reproduced by a mean-field theory. Some featu
such as a monomer rearrangement with H-H preference,
shown also in the coil phase, whose properties are de
mined analytically, by means of a Landau expansion. T
©2002 The American Physical Society03-1
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same expansion allows us to determine analytically theQ
point, at which the second virial coefficient vanishes. It
then possible to analyze easily how theQ-point location is
affected by the percentage of H monomers in the chain,
in principle also by the interaction parameters and by
lattice coordination number.

We now give an outline of the paper. In Sec. II we d
scribe the model in some more detail and recall in sho
general way of treating thermodynamic systems w
quenched disorder in the grand canonical ensemble. In
III we derive the Bethe approximation of the grand potent
The equations used to determine its minima with the requ
constraints, and the most technical details of the numer
method are left to an appendix. In Sec. IV we present
merical results for the special case mentioned above~H-H
interaction only!. In Sec. V we perform the Landau expa
sion of the grand potential in powers of the density, a
analytically determine theQ transition, which is then inves
tigated as a function of the relative monomer concentrat
Finally, Sec. VI is devoted to an overall discussion, to
comparison with previous results, and to some conclud
remarks.

II. THE MODEL AND THE FREE ENERGY

We consider a SAW on a lattice. Each site visited by
walk represents a monomer. Two different kinds of mon
mers are placed at random along the chain, that is, we as
a random variables561 to each monomer. In the following
s511 will denote a H monomer ands521 will denote a P
monomer. The probability distributions~PDs! of the random
variables are fixed~quenched variables!. Two monomers of
speciess, s8 that are nonconsecutive along the chain a
come in contact, i.e., are placed on two NN sites, are
sumed to interact with an energyes,s8 . Empty sites represen
clusters of solvent~water! molecules, and a monome
solvent interaction energygs , depending on the monome
speciess, is assigned to each monomer-solvent contact. S
a model can be readily mapped onto a model with monom
monomer interactions only, but for clarity we shall treat
interactions explicitly in the following, except in Sec. V. W
shall assume that the binary random variables that determ
the sequence of H-P monomers are statistically indepen
with equal distributions:Ps will denote the probability that a
monomer is of speciess.

The randomness of the H-P sequence is a form
quenched disorder: in the remainder of this section we bri
summarize the way we shall deal with this problem. We fi
introduce the canonical free energy for a generic rand
system, along the lines of the procedure proposed by Mo
@21# ~see also Ref.@22#!, giving then a generalization to th
grand canonical ensemble, which is more convenient
polymer lattice models@13#. Let us consider a finite system
at fixed volume and particle numberN ~we shall not denote
explicitly the dependence onN in the canonical ensemble!.
Suppose thath is a set of random variables representing
quenched configuration of the system~in our case the H-P
sequence!, whereasx is another set of random variables re
resenting the annealed degrees of freedom of the sys
03180
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~that is, for instance, the positions of the monomers!. The
Helmholtz free energy associated with a fixedN-monomer
sequenceh can be written in terms of the probability distr
bution of x conditioned onh, denoted byP(xuh), in the
following way:

F~h!5(
x

P~xuh!@H~x,h!1kBT ln P~xuh!#, ~1!

whereH(x,h) is the Hamiltonian of the system,kB is the
Boltzmann constant, andT is the absolute temperature.P(h)
being the PD of the quenched sequencesh, the quenched free
energy can be obtained by averaging overh as

F5(
h

P~h!F~h!, ~2!

which is easily rewritten as

F5(
x,h

P~x,h!@H~x,h!1kBT ln P~x,h!#1TS̃, ~3!

where P(x,h) is the joint PD of the annealed~x! and
quenched~h! degrees of freedom for theN-particle system,
and

S̃52kB(
h

P~h!ln P~h! ~4!

is the information entropy of the random~N-monomer! se-
quence, or more generally the entropy associated with
quenched disorder. A canonical variational principle hol
namely, the equilibrium PDP(x,h) is the one that minimizes
F with the constraint

(
x

P~x,h!5P~h!. ~5!

In order to move to the grand canonical ensemble, one ha
define the grand potential in the usual way as

V5 (
N50

`

P~N!@FN2mN1kBT ln P~N!#, ~6!

wherem is the chemical potential,P(N) is the probability
that the system containsN particles, and FN is the
~quenched! free energy for theN-particle system. If the latter
quantity is expressed via Eq.~3!, in which all probabilities
are conditioned to the particle numberN and theN-particle
Hamiltonian is denoted byHN(x,h), we obtain

V5 (
N50

`

(
x,h

P~x,h,N!@HN~x,h!2mN1kBT ln P~x,h,N!#

1T (
N50

`

P~N!S̃N , ~7!

whereP(x,h,N) is the joint PD of the particle numberN and
of thex andh degrees of freedom, andS̃N is the information
3-2
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entropy of anN-monomer sequence, given by Eq.~4!, in
which the probabilities are conditioned onN. Also, a grand
canonical variational principle holds: The equilibrium joi
PD P(x,h,N) is determined as the one that minimizesV
with the constraint

(
x

P~x,h,N!5P~h,N!, ~8!

equivalent to Eq.~5!. Let us finally notice that in our mode
H and P monomers are placed at random along the c
with no correlation, that is, quenched variables are stat
cally independent~with equal distributionPs). Hence the
information entropy of anN-monomer sequence is

S̃N52NkB (
s561

Ps ln Ps , ~9!

and the grand potential can thus be written as

V5 (
N50

`

(
x,h

P~x,h,N!@HN~x,h!2m̃N1kBT ln P~x,h,N!#,

~10!

where

m̃5m1kBT (
s561

Ps ln Ps . ~11!

In the next section we shall derive the Bethe approximat
for the grand potential~10!.

III. BETHE APPROXIMATION

Let us consider a generic lattice withN sites and coordi-
nation numberq, and a polymer, i.e., a SAW, on the lattic
We see that defining the numberN of monomers in the lat-
tice, their positionsx, and their chemical speciesh is equiva-
lent to defining, for each lattice site, the following things:~i!
whether the site is empty or visited by the walk and, in t
latter case,~ii ! the configuration of the monomer on that sit
that is, the directions of the two chain segments toward
previous and next monomer, and~iii ! the monomer species H
or P. It is then useful to define, for each site, a state varia
k52n,..., n, such thatk50 if the site is empty~occupied
by solvent!, k.0 (k,0) if the site is occupied by a H~P!
monomer, anduku51,...,n if the two chain segments~toward
the previous and next monomer! choose one of the

n5S q
2D ~12!

possible configurations. Thus we have transformed a p
mer lattice system into a Potts-like model in which, to p
serve polymer connectivity and the self-avoiding conditio
site state variables have to satisfy some constraints. In
ticular, if sites 1 and 2 are NNs, and the configurational s
of site 1 is such that it is linked~not linked! to site 2, then
also site 2 must be in a state linked~not linked! to site 1. The
Bethe approximation, taking into account pair correlations
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an exact way, is able to impose such constraints. The j
PD P(x,h,N), introduced in the previous section, is equiv
lently expressed by the joint PDP(k1 ,...,kN)[P(k) of the
state variables of all lattice sites. The grand potential of
system can then be written as

V5(
k

P~k!@H~k!2m̃N~k!1kBT ln P~k!#, ~13!

whereH(k) is a lattice Hamiltonian, including NN pair en
ergy contributionses,s8 andgs ~as described in the previou
section!, and infinite energy penalties assigned to NN p
states that violate connectivity constraints.

According to the Bethe approximation, the lattice sta
PD P(k) can be approximated by

P~k!')̂
i , j &

pki ,kj

~ i , j ! F)
i

pki

~ i !G2~q21!

, ~14!

whereP^ i , j & denotes a product over all NN pairs,P i a prod-
uct over all sites,pk,k8

( i , j ) is a pair PD~i.e., the probability that
the NN sitesi,j are, respectively, in the statesk, k8), andpk

( i )

is a site PD~i.e., the probability that the sitei is in the state
k!. Due to the fact that the interaction energyH(k) and the
chemical potential term2m̃N(k) can be written as a sum o
terms depending only on NN pair states as

H~k!2m̃N~k!5(
^ i , j &

hki ,kj

~ i , j ! , ~15!

where hki ,kj

( i , j ) must be defined in a suitable way, Eq.~14!

substituted into Eq.~13! yields

bV'(
^ i , j &

(
k52n

n

(
k852n

n

pk,k8
~ i , j !

~bhk,k8
~ i , j !

1 ln pk,k8
~ i , j !

!

2~q21!(
i

(
k52n

n

pk
~ i ! ln pk

~ i ! , ~16!

where as usualb51/kBT. The above expression of the gran
potential can be further simplified. First one assumes hom
geneity and isotropy, whence it is sufficient to evaluate
average contribution to the grand potential due to a fixed p
of NN sites. Secondly, it is possible to show that, in t
framework of the Bethe approximation applied to a polym
with zero stiffness@11#, each one of then local chain con-
figurations has the same probability~which, however, may
be different for H and P monomers!. With respect to a fixed
pair of NN sites, say 1 and 2, it is then only necessary
distinguish configurations of site 1 that are linked~or not
linked! to site 2 by a chain segment, and vice versa for sit
with respect to site 1. We shall then consider for site 1
state variablek522,...,2 defined as follows:k50 if the site
is occupied by solvent,k.0 (k,0) if the site is occupied by
a H ~P! monomer,uku51 if the monomer at site 1 is linked to
site 2 by a chain segment~the two monomers are consecutiv
along the chain!, anduku52 if the monomer is not linked to
site 2 ~site 2 is occupied by solvent or by a nonconsecut
3-3
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monomer!. The state of site 2 can be defined in an analog
way by a variablek8: uk8u51 (uk8u52) if the monomer at
site 2 is linked~not linked! to site 1. The reduced ‘‘encod
ing’’ of states is displayed in detail in Table I. The value of
site variable does not define an elementary state any lon
rather a number of elementary states, that is, a degen
state. It is easy to verify that the degeneracy ofk is

wk5S q21
uku D . ~17!

Defining the grand potential per site asv5V/N in the ther-
modynamic limitN→`, according to the above discussio
we can finally write

bv5
q

2 (
k522

2

(
k8522

2

wkwk8pk,k8
~1,2!

~bhk,k81 ln pk,k8
~1,2!

!

2
q21

2 (
i 51,2

(
k522

2

wkpk
~ i ! ln pk

~ i ! , ~18!

whereq/2 is the number of NN pairs per site, the pair en
gieshk,k8 are those of Table II, and the site PDspk

(1) andpk8
(2)

are derived from the pair PDpk,k8
(1,2) as marginal distributions

in the following way:

pk
~1!5 (

k8522

2

wk8pk,k8
~1,2! ,

pk8
~2!

5 (
k522

2

wkpk,k8
~1,2! . ~19!

Of course, according to the homogeneity hypothesis, the
two distributions must be the same, that is,

pk
~1!5pk

~2! ~20!

~for all k!, which is implied by the symmetry of the pair P

TABLE I. Site states, defined with respect to a fixed NN s
~right column!, and corresponding values of the state variable~left
column!. H,P monomers are denoted, respectively, by%, *;
solvent~water! molecules by(. The reference NN site is denote
by a dot. Oblique segments denote chemical bonds in generic
rections except the reference one.
03180
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pk,k8
~1,2!

5pk8,k
~1,2! . ~21!

We have thus written an approximate grand potential per
v as a function of only the pair probabilitiespk,k8

(1,2) , the site
probabilities depending on them via Eqs.~19!. Let us notice
that v, as it has been derived, is actually the excess gr
potential of the polymer-solvent system with respect to p
solvent, and the same holds for the thermodynamic quant
that will be computed in the following. We shall omit th
‘‘excess’’ specification for brevity.

In order to determine equilibrium properties, we have
minimize the grand potential with respect to pair probab
ties. Notice that in principle we have taken into account t
different site~marginal! PDs, even if the constraint Eq.~20!
must hold. This is a trick, which allows us to write equatio
that preserve the symmetry of the pair PDs Eq.~21!, and to
avoid imposing the constraint explicitly. Nevertheless,
have to take into account other constraints. First of all,
pair PD must be~by definition! normalized:

(
k522

2

(
k8522

2

wkwk8pk,k8
~1,2!

51. ~22!

Second, it must be taken into account that the states61 and
62 have been distinguished to account for different pair
ergy contributions and the connectivity constraint, but,
previously mentioned, all local chain configurations mu
have the same probability, whence

ps
~ i !5p2s

~ i ! , ~23!

for s561 and i 51,2. Finally, we should take into accoun
the constraint Eq.~8!, to fix the PD of the quenched disorde

i-

TABLE II. Pair energieshk,k8 : es,s8 denote interaction energie
between monomer speciess,s856; gs denote interaction energie
between a monomer speciess56 and the solvent;m̃ is defined by
Eq. ~11!. hk,k85` corresponds to pair statesk,k8 that violate con-
nectivity constraints.

k

k8

22 21 0 11 12

22 e2,222
m̃

q
` g22

m̃

q
` e1,222

m̃

q

21 ` 22
m̃

q
` 22

m̃

q
`

0 g22
m̃

q
` 0 ` g12

m̃

q

11 ` 22
m̃

q
` 22

m̃

q
`

12 e1,222
m̃

q
` g12

m̃

q
` e1,122

m̃

q

3-4
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We do so in an approximate way, by fixing the average c
centration of the two monomer species on each site, tha
by imposing the constraint

(
s561

sps
~ i !5m (

s561
ps

~ i ! , ~24!

again fors561 andi 51,2, wherem is the quenched aver
age defined by

m5 (
s561

sPs , ~25!

representing the relative concentration of H monomers w
respect to P monomers. We do not need to impose the st
tical independence of chemical species along the chain,
cause it is possible to verify that it comes out naturally a
consequence of the fact that any pair of chemically bon
monomers~H-H,P-P,H-P! yields the same energy~see Table
II !. Moreover, as previously mentioned, we do not even n
to impose the symmetry constraints Eqs.~20! and ~21!, be-
cause they turn out to be automatically satisfied if the ot
constraints Eqs.~23! and ~24! are imposed for both sites~1
and 2!, thus giving rise to equations that are symmetric un
exchange ofk andk8.

It is possible to perform numerically a minimization o
the grand potentialv @Eq. ~18!#, with the constraints Eqs
~22!, ~23!, and ~24!, by means of an iterative method fir
proposed by Kikuchi@24#. Let us only notice that the metho
allows us to compute the equilibrium~pair and site! PDs
pk,k8

(1,2) and pk
(1)5pk

(2) , which give information on the micro
scopic state of the system, as well as the equilibrium gr
potentialv itself, from which all other thermodynamic quan
tities can be derived. We leave technical details of
method to the Appendix.

IV. NUMERICAL RESULTS

We now present the results of a calculation about an
ample of the class of systems introduced in Sec. II. We c
centrate on the case in whichm50 ~equal proportions of H
and P monomers! and in which H monomers interact wit
one another with an energye1,1[2e, with e.0. This
simple model has been considered in the literature@14–16#
to describe the effect of hydrophobicity on the behavior
H-P copolymers.

We compute, as an order parameter, the probabilityx51
2p0

( i )[12p0 that a site is occupied by a monomer of a
species, that is, the monomer volume fraction. Notice, by
way that, due to the homogeneity condition Eq.~20!, from
now on we shall always omit the PD superscripts. Given t
the stable phase is the one with the minimum grand poten
it is possible to investigate the phase diagram of the syst
This is displayed in Fig. 1~a! in the planebe-bm for the
three-dimensional cubic lattice, corresponding to a coord
tion numberq56. We obtain a phase transition between
polymerized phase, in whichx.0, and a nonpolymerized
~pure solvent! phase, in whichx50. The transition is con-
tinuous for low values ofbe and discontinuous for highe
03180
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values, and the two regions are separated by a tricrit
point. The polymerized phase, in the limit ofbm tending to
the transition line, represents an isolated chain in solut
@11#: the continuous transition region (x→01) corresponds
to an extended~coil! state, while the coexistence region co
responds to a compact~globule! state. The tricritical point~Q
point! separates the two regimes. It is important to notice t
this sort of picture implies that surface effects are neglec
that is, ~when the polymer is in the globule state! the inter-
action of surface monomers with the solvent is not taken i
account. This question will be addressed again in Sec.
where we discuss our results in comparison with models
tempting to describe the effect of hydrophobicity in prote
folding. In Fig. 1~b! the phase diagram is displayed for th
homopolymer case~in which every monomer-monomer con
tact yields an energy2e!. The phase diagram is qualitativel
similar but theQ transition is obtained for a lower value o
be, due to the fact that noninteracting monomers in the p
vious case favor the coil state.

We now analyze the most significant thermodynam
functions, namely, the Helmholtz free energy, internal e
ergy, and entropy. Due to the fact that we always consi
excess quantities with respect to the pure solvent, it turns
thatv, which we defined in the previous section, vanishes
the pure water phase, and on the transition line as well. A
consequence, it is possible to show by standard thermo
namics thatm at the transition line coincides with the Helm
holtz free energy per monomerf in the infinite dilution limit.
Remembering Eq.~18! it is easy to see that the internal e
ergy per monomeru can be evaluated as

u5m̃1
q

2x (
k522

2

(
k8522

2

wkwk8pk,k8hk,k8 . ~26!

The entropy per monomer comes froms/kB5b(u2 f ). In
Fig. 2 we report the Helmholtz free energy, internal ener
and entropy differences with respect to the expanded coi
functions of be. It can be shown analytically~we refer to
Sec. V for the derivation! that in the coil phase the interna
energy per monomer vanishes, whereas the entropy
monomer is

FIG. 1. Phase diagram in the planebe-bm for the three-
dimensional cubic lattice (q56), in the casesm50, equal propor-
tions of H and P monomers~a!, andm511, H monomers only~b!.
Dashed~solid! lines denote continuous~discontinuous! transitions.
Circles denote tricritical points.
3-5
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s5kB ln~q21!. ~27!

The former result means that a vanishing number
monomer-monomer contacts is realized, while the latter
flects the fact that the polymer chooses amongq21 equally
probable directions at each step. Of course, this is a sim
fied representation of an expanded coil in the Bethe appr
mation. The internal energy and entropy in the coil phase
also be determined numerically in principle, by extrapolat
asbm tends to the second order transition line. Neverthele
in this region the algorithm becomes slower and slower
numerical errors increase; hence the analytical results w
we derive in Sec. V are helpful. In Fig. 2~a! it is possible to
see that, as expected, internal energy and entropy decr
as be increases, signaling that the system undergoes a
lapse, increasing the number of contacts between ‘‘acti
~H! monomers. It is interesting to compare the results w
the purely H homopolymer case, reported in Fig. 2~b!. It can
be seen that both internal energy and entropy have a slo
decrease in the heteropolymer case but, as far as entro
concerned, this is true only near the transition. This sugg
that the heteropolymer globule tends to be more ordered~to
have a lower entropy! than the homopolymer one, due
‘‘selective’’ monomer-monomer interactions.

In Fig. 3 we report some parameters, related to the e
librium PD, that give some significant information about t
local structure of the system. First of all we plot the s
occupancy probability, equal to the monomer volume fr
tion x, vanishing in the coil phase~in the infinite dilution
limit ! and continuously increasing after theQ transition. For
the heteropolymer case the increase is slower, confirming
picture of a less abrupt transition. Secondly we present
monomer-monomer contact probabilityy, defined as the con
ditioned probability that a monomer~of any species! has a
certain NN site occupied by a monomer~of any species!
which is not consecutive along the chain:

y[

(
s561

(
s8561

p2s,2s8

(
s561

p2s

. ~28!

FIG. 2. Differences of Helmholtz free energy~bD f , solid line!,
internal energy~bDu, dashed line!, and entropy~Ds/kB , dotted
line! per monomer of the globule phase with respect to the
phase, as functions ofbe. In ~a! we havem50, equal proportions of
H and P monomers, and in~b! m511, H monomers only.
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The numerical value ofy is not very different from the av-
erage densityx, but the difference is slightly more evident i
the heteropolymer case, and indeed it becomes more im
tant asbe increases, unlike in the homopolymer case. Due
the fact that this difference is an indicator of the correction
the Bethe approximation to the mean-field theory, a sugg
tion arises that the importance of the correction is greater
the heteropolymer case. Both the above quantities are i
cators of the compactness of the polymer. For the h
eropolymer, however, we need also an indicator of the or
induced by the preference of H monomers to make cont
with one another. We choose the conditioned probabilitz
that a monomer in contact with a H monomer is of the sa
species. In terms of pair PDs we have

z[
p12,12

(
s8561

p12,2s8

. ~29!

In the coil phase region this quantity can be evaluated a
lytically, and turns out to be

z5
1

11e2beP2 /P1
. ~30!

We again refer to Sec. V for the derivation. It is worth notin
that z is an increasing function ofbe, and actually already
starts increasing from the trivial value 1/2~no monomer pref-
erence! in the coil phase. Moreover, the slope of the curve
lower in the globule phase, even ifz is still increasing. In-
deed, this is not surprising, and the physical meaning is
when the polymer is in a collapsed state it is more diffic
for it to rearrange monomers of different species in order
satisfy energetically advantageous bonds. In a few words
model predicts that some rearrangements must take p
already when the polymer is in an extended phase. This
ture is easily caught by the pair approximation, but would
missed by a mean-field theory.

il

FIG. 3. Equilibrium average local structure properties: monom
volume fractionx ~solid line!, monomer-monomer contact probabi
ity y, as defined by Eq.~28! ~dashed line!, and, only in~a!, H-H
contact probabilityz, as defined by Eq.~29! ~dotted line!. In ~a! we
havem50, equal proportions of H and P monomers, and in~b! m
511, H monomers only.
3-6
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V. LANDAU EXPANSION

In this section we perform a Landau expansion of
grand potentialv @Eq. ~18!# in powers of the monomer vol
ume fractionx, which is the order parameter of the syste
This is useful to determine analytically the second order tr
sition and the tricritical point, which is quite a time
consuming task, by the numerical algorithm employed
perform the minimization ofv. First of all we have to write
the grand potential as a function of only independent pr
ability variables, which turn out to bep[p111p215p12
1p22 , related to the monomer volume fraction byx5(w1
1w2)p, andp2s,2s8 , for s,s8561. Notice that, according to
Eq. ~21!, we havep12,225p22,12 , and hence we should
consider only four independent variables. Nevertheless,
keep the above two variables distinct to simplify the no
tion. Making use of all the constraints Eqs.~21! and ~22!–
~24!, of Eqs.~19!, and of the fact that some pair states are
allowed because they violate connectivity constraints,
easily obtains all site and pair probabilities as functions
the independent variables:

p0512~w11w2!p, ~31!

ps5p2s5Psp, ~32!

p0,0512~w112w2!p1w2
2 (

s561
(

s8561

p2s,2s8 , ~33!

p0,s5ps,050, ~34!

p0,2s5p2s,05Psp2w2 (
s8561

p2s,2s8 , ~35!

ps,s85ps8,s5PsPs8p/w1 , ~36!

ps,2s85p2s8,s50. ~37!

We can use Eq.~35!, together with Eq.~26!, to show that the
present model can be mapped onto a model with monom
monomer interactions only. The mapping results in the f
lowing substitutions, to be performed in Table II,

es,s8→es,s82gs2gs8 ,

gs→0,

m→m2~q22!^gs&s , ~38!

wheres,s8561 and

^gs&s[ (
s561

Psgs . ~39!

In the following we shall actually study such a simplifie
model. We then substitute Eqs.~31!–~37! in the expression
of the grand potential Eq.~18!, taking the derivatives with
respect to the independent variables:
03180
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]bv

]x
52@bm1 ln~q21!#1~q21!ln

p0

p0,0

2~q22! (
s561

Ps ln
Psp

p0,2s
, ~40!

]bv

]p2s,2s8
5

q

2
w2

2S bes,s81 ln
p0,0p2s,2s8
p0,2sp0,2s8

D . ~41!

Let us notice that, substituting Eqs.~31!–~37! into Eq. ~18!
except in the arguments of the logarithms, and taking i
account Eqs.~40!, ~41!, it is possible to show that

bv5
q

2
ln p0,02~q21!ln p01x

]bv

]x

1 (
s561

(
s8561

p2s,2s8

]bv

]p2s,2s8
, ~42!

which will be useful in the following. We now set to zero th
derivatives Eqs.~41!, obtaining some of the necessary co
ditions for the minimum of the grand potential,

p2s,2s85e2bes,s8
p0,2sp0,2s8

p0,0
. ~43!

This set of equations defines, through Eqs.~33! and ~35!,
four implicit functionsp2s,2s8(p), that allow one in principle
to determine the grand potential as a function ofp only. The
minimum condition is then obtained by setting to zero t
right hand side of Eq.~40!. The implicit functionsp2s,2s8(p)
are not easy to determine, due to the fact that Eqs.~43! are
coupled with one another. Anyway we are interested only
the asymptotic behavior forp→0, which is easily verified to
be

p2s,2s85e2bes,s8PsPs8p
21o~p2!. ~44!

Let us notice that Eq.~44! is sufficient to prove Eq.~30!,
taking the limit p→0. Moreover, substituting into Eqs.~33!
and ~35!, we have

p0,0512~w112w2!p1^e2bes,s8&s,s8w2
2p21o~p2!,

~45!

p0,2s5Psp@12^e2bes,s8&s8w2p1o~p!#, ~46!

where

^e2bes,s8&s8[ (
s8561

Ps8e
2bes,s8, ~47!

^e2bes,s8&s,s8[ (
s561

(
s8561

PsPs8e
2bes,s8.

~48!

Finally, substituting Eqs.~45!, ~46!, and ~31! into Eq. ~40!
and hence into Eq.~42!, where the last term is obviousl
o(p2), we obtain
3-7
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bv52@bm1 ln~q21!#x1
q22

2q

3@~q21!2~q22!^e2bes,s8&s,s8#x
21o~x2!,

~49!

which is just the required expansion.
It is easy to see that, when the monomer volume fract

x vanishes, the grand potential is zero, i.e., it is equal to
of pure solvent, as one could expect. Moreover, one can
serve that, if the second order term is positive, a continu
transition can take place when the first order term chan
sign. This leads us to locate the continuous transition at

bm52 ln~q21!. ~50!

Due to the fact thatm at the transition coincides with th
Helmholtz free energy per monomer of the isolated polym
in solution, we can also verify that it is made up of the on
entropic term Eq.~27!, because Eq.~44! implies that the
internal energy per monomer isO(x2)/x5O(x) in the limit
x→0 and hence vanishes in the coil phase. We can
observe that, if on the contrary the second order term
negative, only a discontinuous transition can take place,
region where the first order term is positive, although
cannot locate it analytically. Anyway, we see that a vanish
second order coefficient

^e2bes,s8&s,s85
q21

q22
~51!

determines the separation between the continuous and
continuous transition regions, i.e., theQ point. We can solve
this equation for the case of our simple test model, analyz
the behavior of theQ transition~namely, of the value ofbe
where the transition takes place! as a function of the param
eter m, related to the fraction of H monomers in the cha
~see Fig. 4!. For m511 only H monomers are present an
one obtains

~be!Q5 ln
q21

q22
~52!

~' 0.2231 for q56). Upon increasing the fraction of
monomers, (be)Q increases as well, and hence the glob
turns out to be less and less stable. The curve asymptotic
tends to infinity form→21, meaning that the purely ‘‘hy-
drophilic’’ polymer has no collapsed state, as could be
pected.

FIG. 4. Q transition line: (be)Q as a function ofm.
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VI. DISCUSSION AND CONCLUSIONS

In this paper we have generalized the pair approximat
scheme of the CVM to a lattice random copolymer mod
with particular attention to the case of H-P copolymer. W
have also analyzed thermodynamic functions~free energy,
internal energy, entropy! and parameters related to the equ
librium ~pair! PD in a particularly simple case, previous
investigated by Dill @15#. It is worth remarking on some
interesting issues.

First of all we observed that the entropy of the collaps
state is considerably lower when we consider the case of
copolymer, with respect to the case of a purely H homopo
mer. This is a significant effect, which can be ascribed to
‘‘selective’’ interaction between monomers of a certain sp
cies, which makes the polymer collapse into a more orde
state. Such an entropy lowering was also observed in R
@19# in the case of a weakly H polymer~and actually we
expect that this effect will be further enhanced by an incre
ing concentration of P monomers!, but in that case it was
accompanied by an unusual first order collapse, wherea
our case the transition is continuous.

In addition to the thermodynamic quantities, we have a
analyzed in some detail pair correlations at thermodyna
equilibrium. The most interesting parameter is perhaps
we have denoted byz, which describes quantitatively th
preference of H monomers to be in contact with monom
of the same species. It turns out that it is an increasing fu
tion of the interaction parameterbe in the coil phase also. On
the one hand this means that the coil phase is actually n
trivial, because some ordering is induced by the prefere
among H monomers, even if the polymer is globally in
extended state. On the other hand it suggests that the B
approximation is able to catch this effect, which would n
be taken into account in the hypothesis of neglecting p
correlations.

An important part of the paper has been devoted to
Landau expansion, which gives information about the c
phase and theQ point analytically. We compare the latte
result with the original work by Aguilera-Granja and Kikuch
@6#. They considered a homopolymer model with
monomer-solvent interaction energyJ, which in our notation
meansg15J and g25es,s850. Using Eqs.~38! and ~52!,
the Flory parameter at theQ point turns out to be

xQ5~bqJ!Q5
q

2
ln

q21

q22
. ~53!

The numerical values obtained by this formula are compa
in Table III with those obtained numerically in Ref.@6#. The
small discrepancy for low values ofq can probably be as
cribed to the fact that in the cited paper numerical values
computed at finite chain length. Moreover, it is easy to s
that

lim
q→`

xQ5
1

2
, ~54!
3-8
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confirming the fact that Flory’s theory@10# gives the correct
result in the infinite coordination limit@6#.

We also compare our results with those obtained by D
@15#, who worked out a mean-field-like treatment of a
analogous model on a ‘‘spherical’’ lattice. To do so we rec
that in the cited paper the stability of a globular protein
estimated through the free energy difference between
‘‘ordered’’ collapsed state, representing the folded state,
a ‘‘randomly collapsed’’ state, representing the unfolded o
We assume that in the framework of our model, which do
not possess an underlying ‘‘globular’’ geometry, the ra
domly collapsed state could be reasonably represented b
ordinary collapsed state of an ‘‘equivalent homopolymer’’
which the monomer-monomer interaction equalseP1

2 , that
is, the H-H contact energy reduced by a factor which ta
into account the random arrangement of monomers. In Fi
we report the free energy difference with respect to suc
‘‘homopolymer’’ system, for different values ofbe, as a
function of the parameterm, related to the H monomer con
centration. Of course it turns out that a stronger interact
corresponds to a higher stability, but the most important f
ture is that a concentration of maximum stability is observ
as predicted by Dill’s model. Above and below that conce
tration the ‘‘folded’’ state becomes less stable. Let us not
that in our treatment, due to the the fact that the surf
effect is neglected~as mentioned in Sec. IV!, there is no
possibility of describing a global rearrangement of H mon
mers in the core and of hydrophilic monomers outside. O
local rearrangements are taken into account and this is p

TABLE III. Comparison between theQ points~in terms of Flo-
ry’s parameterx! obtained in the present work, Eq.~53!, and in Ref.
@6#, for the H homopolymer case and for different values of t
coordination numberq.

q xQ : Eq. ~53! xQ : Ref. @6#

4 0.8109 0.77
6 0.6694 0.675
8 0.6166 0.61

12 0.5719 0.57

FIG. 5. Difference of Helmholtz free energy per monom
(bD f ) with respect to the ‘‘equivalent homopolymer’’ as a functio
of m, for different values ofbe. Thin dashed lines mark theQ
transitions of the ‘‘equivalent homopolymer.’’ TheQ transitions of
the copolymer take place where the free energy differences va
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ably the reason why the maximum stability effect can
observed even in the infinite length limit, unlike in Dill’
model. Other discrepancies can be observed at high con
trations of P monomers~low m values!, where we never have
an unfolded state more stable than the folded one, due to
fact that the ‘‘equivalent homopolymer’’ always reaches t
Q point at higherm values than the copolymer.

Finally, we would like to note that one might expect th
possibility of taking into account at least local~pair! corre-
lations along the sequence, by means of the Bethe appr
mation. This might be of some relevance, because in
framework of the H-P model important correlations have
cently been observed@25# in sequences properly designed
have globular conformations with H monomers shielded b
ones. Unfortunately, it turns out that imposing pair corre
tions between contiguous monomers is simply equivalent~in
our scheme! to a chemical potential shift, with no effect o
the single polymer properties. It might be possible to ta
such correlations into account by considering larger ba
clusters in the spirit of the CVM. This goes beyond the sco
of the present paper and will be the subject of a future wo
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APPENDIX: NUMERICAL MINIMIZATION OF v

As mentioned in Sec. III, in this appendix we give th
technical details of the numerical method employed to fi
constrained minima of the grand potential with respect
pair probabilitiespk,k8

(1,2) . According to the Lagrange multi
plier method, such minima can be found as the free mini
of another functional, namely,

bṽ5bv2
q

2 S (
k522

2

(
k8522

2

wkwk8pk,k8
~1,2!

21DL

2
q

2 (
i 51,2

(
s561

@~ps
~ i !2p2s

~ i !!Ks
~ i !1~s2m!ps

~ i !J ~ i !#,

~A1!

with respect both to the pair probabilities and the Lagran
multipliers J ( i ), Ks

( i ) , andL. Setting to zero the partial de
rivatives ofbṽ with respect topk,k8

(1,2) gives rise to a system o
equations, easily written in fixed point form

pk,k8
~1,2!

5W exp~2bhk,k81Vk
~1!1V k8

~2!
1U k

~1!1U k8
~2!

!

3~pk
~1!pk8

~2!
!~q21!/q, ~A2!

where the unknown parametersU k
( i ) , V k

( i ) , andW are related
to the Lagrange multipliers in the following way:

U k
~ i !5J ~ i !d uku,1~k2m!, ~A3!h.
3-9
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V k
~ i !5Ksgnk

~ i !
d uku,12d uku,2

wk
, ~A4!

W5expS L1
q22

q D ~A5!

~sgn denotes thesign function, returning11, 21, or 0 if its
argument is, respectively, greater than, less than, or equ
zero!. The numerical problem is solved as follows. Equati
~A2! is used as elementary iteration of a fixed point meth
usually called the natural iteration method@23#. Nonetheless,
we need to determineU k

( i ) , V k
( i ) , andW at each iteration, in

order to satisfy the constraints. We do so by a nested itera
method, involving the following steps.

~1! SetKs
( i )50, J ( i )50, andW51 ~W is a simple nor-

malization constant!.
~2! Compute a trial ‘‘next step’’ estimate ofpk,k8

(1,2) by
means of Eq.~A2!.

~3! Adapt the Lagrange multipliers by the iterative equ
tions

K̂s
~ i !5Ks

~ i !2a
w1w2

w11w2
ln

ps
~ i !

p2s
~ i ! , ~A6!

Ĵ ~ i !5J ~ i !2aS 1

2
log

p11
~ i !

p21
~ i ! 2tanh21 mD ,

~A7!

where carets denote the new estimates anda is a ‘‘relax-
ation’’ parameter, chosen empirically~a'0.4 is usually a
good choice!.

~4! If the distancesuK̂s
( i )2Ks

( i )u and uĴ ( i )2J ( i )u are
larger than some tolerance~i.e., if the estimate ofpk,k8

(1,2) does
not satisfy the constraints within the tolerance!, go to step 2.

~5! DetermineW by normalization.
The nested iteration method, first applied by Kikuchi@24#,

proves to converge quite easily for this problem. Let us
tice that Eqs.~A6! and ~A7! are derived in a nonrigorou
way, although following precise criteria. Withi 51,2 ands

561, let K̂s
( i ) andKs

( i ) be, respectively, the ‘‘new’’ and the
‘‘old’’ estimates of the Lagrange multipliers used to impo
the constraint Eq.~23!, and p̂s

( i ) , andps
( i ) ~p̂2s

( i ) andp2s
( i )) the

corresponding estimates of the site probabilities, evalua
by Eq. ~A2! and Eqs.~19!. Taking into account also Eq
~A4!, it is easy to show that
a

03180
to

,

ve
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-

d

p̂s
~ i !5

exp~K̂s
~ i !/w1!

exp~Ks
~ i !/w1!

ps
~ i ! , ~A8!

p̂2s
~ i !5

exp~2K̂s
~ i !/w2!

exp~2Ks
~ i !/w2!

p2s
~ i ! . ~A9!

Of course we would like the new estimates of site probab
ties to satisfy the constraint Eq.~23! and hence we impose

p̂s
~ i !5 p̂2s

~ i ! . ~A10!

We then easily obtain Eq.~A6! with a51. In this way the
iterative procedure usually does not converge, and this is
reason why we introduce the relaxation parametera,1, ad-
justed empirically. A similar derivation can be performed f
Eq. ~A7!. By means of Eqs.~A2!, ~19!, and ~A3! we can
write, with analogous meaning of the symbols,

p̂s
~ i !5

exp@Ĵ ~ i !~s2m!#

exp@J ~ i !~s2m!#
ps

~ i ! . ~A11!

Hence, imposing the constraint Eq.~24!, that is,

(
s561

sp̂s
~ i !5m (

s561
p̂s

~ i ! , ~A12!

one easily obtains Eq.~A7! with a51.
It is finally possible to show that, once the iterative pr

cedure has reached convergence, one has

bv5
q

2
ln W, ~A13!

which allows us to evaluate easily the equilibrium grand p
tential per site. Let us also notice that, if we start the pro
dure with a translationally invariant~that is, independent o
i! PD, and with guess values of the Lagrange multiplie
independent ofi as well, the whole iterative procedure
independent of the site index. This means that actually i
not necessary to define two different sets of Lagrange mu
pliers ~for i 51,2), but only one is sufficient. We can the
remove the superscripts from all Lagrange multipliers a
related parameters.
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