PHYSICAL REVIEW E 66, 031803 (2002

Bethe approximation for a hydrophobic-polar random copolymer
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A previous analysis of the configurational statistics of a lattice self-avoiding walk, based on the pair ap-
proximation of the cluster variation meth@Bethe approximation is generalized to describe a random co-
polymer in dilute solution, in which monomers interact with one another and with the solvent. The phase
diagram is worked out numerically and the coil-globule transition is obtained. Entropy and internal energy in
the coil phase, as well as th@ point are evaluated analytically, by means of a Landau expansion of the
variational free energy. A detailed analysis is carried out for the case in which the only interaction present is an
attraction between monomers of one species. Such a model has been proposed in the literature to mimic a
random copolymer made up of hydrophobic and polar monomers in water solution, a physical system which is
believed to be relevant to understanding the behavior of proteins.
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[. INTRODUCTION structure needs also the presence of a particular sequence of
amino acids and a randomly chosen sequence usually does
The Bethe approximatiofil] is a common statistical me- not fold. Nevertheless, studying a particular case of the
chanical technique to study lattice systems. It improves uposimple model treated in this papésy a mean-field-like ap-
the simple mean-field theory, by taking into account correlaproach on a “spherical” lattice Dill obtained important
tions between nearest neightddN) sites, and can be refor- qualitative information about the folding procegk5] and
mulated with different points of view. By a simplified count- the thermal stability16] of globular proteins. Since then, the
ing of lattice states, it has been presented as a quasichemiaa-called H-P(hydrophobic-polar model has been exten-
approximation[2]. By a suitable truncation of the entropy sively investigated from different points of view. Exact enu-
cumulant expansion it can be seen as the lowest (@ap meration studies on finitéfixed) H-P sequences have been
approximation[3,4]) of a hierarchy of approximations that devoted to find the sequences that are likely to be good fold-
takes into account correlations up to arbitrarily large clustersers [17] or to determine the designability of native states
and is known as the cluster variation metf@¥/M) [5]. The  [18]. More analytical investigations, based on the replica
pair approximation was first applied to lattice polymer statis-theory, have been devoted to determine general properties of
tics by Aguilera-Granja and Kikuchi, who treated the prob-the random H-P copolymer model, mainly in the presence of
lem of (polydispersgpolymer solution§6—8], and obtained Gaussian disord¢i9,20. In Ref.[19] the authors found that
several improvements over the classical Flory thd®rg0]. in the case of weak hydrophobicity the ordinaycollapse
More recently the pair approximation was generalized tds replaced by an unusual first order collapse and that the
treat the configurational statistics of a single self-avoidingentropy of the corresponding compact state is strongly re-
walk (SAW) in the grand canonical ensemBlEL], which is  duced with respect to the ordinary collapsed phase. More-
the usual way to model a single linear polymer in solutionover, in Ref.[20] a replica symmetry breaking has been ob-
[12,13. In Ref.[11] the authors considered a semiflexible served, corresponding to a frozen state, in addition to the
polymer model, and noticed several improvements over therdinary (molten) compact state.
corresponding mean-field theory as well, in spite of the sim- In this paper we shall mainly focus on tl& transition
plicity of the pair approximation. In this paper we have theand related properties, especially in comparison with the case
purpose of extending this kind of approach to the case of af a purely H homopolymer. As previously mentioned, the
random copolymer in which monomers of the two specieamodel is quite general in principle, and includes both
interact with one another and with the solvent, introducingmonomer-monomer and monomer-solvent interactions.
suitable approximations to treat the quenched disorder of thonetheless, as observed by Dilb], it is possible to model
monomer sequence. a H-P copolymer by just retaining an attractive interaction
Copolymer models have attracted great attention in thenergy between H monomers, neglecting all other interac-
latest years, especially in the case of monomer species disions. In the framework of the Bethe approximation, we shall
tinguished on the basis of their degree of hydrophilicity present detailed numerical results for this simpler case, al-
(hydrophobic-hydrophilic copolymersbecause of connec- though the analytical treatment is general. Due to the fact
tions to the protein folding problem. The importance of hy-that pair correlations are taken into account exactly, we ob-
drophobicity to protein folding was shown by Djll4], who  serve a more “realistic” behavior of the model, which could
suggested that the main driving force of the process was theot be reproduced by a mean-field theory. Some features,
tendency of polarthydrophili amino acid monomers to such as a monomer rearrangement with H-H preference, are
shield nonpolathydrophobi¢ monomers from the water en- shown also in the coil phase, whose properties are deter-
vironment. Of course the formation of a peculiar nativemined analytically, by means of a Landau expansion. The
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same expansion allows us to determine analytically @he (that is, for instance, the positions of the monomefhe
point, at which the second virial coefficient vanishes. It isHelmholtz free energy associated with a fixsemonomer
then possible to analyze easily how tBepoint location is  sequencénr can be written in terms of the probability distri-
affected by the percentage of H monomers in the chain, andution of x conditioned onh, denoted byP(x|h), in the
in principle also by the interaction parameters and by thedollowing way:
lattice coordination number.

We now give an outline of the paper. In Sec. Il we de- _
scribe the model in some more detail and recall in short a F(h)_g PXIMIH(x.0) +kaTIn P(x|h)], @
general way of treating thermodynamic systems with
quenched disorder in the grand canonical ensemble. In Sewhere 7(x,h) is the Hamiltonian of the systenkg is the
Il we derive the Bethe approximation of the grand potential.Boltzmann constant, anlis the absolute temperaturg(h)
The equations used to determine its minima with the requireddeing the PD of the quenched sequerttebe quenched free
constraints, and the most technical details of the numericanergy can be obtained by averaging olexs
method are left to an appendix. In Sec. IV we present nu-
merical results for the special case mentioned ahix1 F=E P(h)F(h) )
interaction only. In Sec. V we perform the Landau expan- h '
sion of the grand potential in powers of the density, and ) )
analytically determine th@ transition, which is then inves- Which is easily rewritten as
tigated as a function of the relative monomer concentration.
Finally, Sec. VI is devoted to an overall discussion, to a F=> P(xh)[H(x,h)+ksTINP(x,h)]+TS, (3
comparison with previous results, and to some concluding x.h

remarks.
where P(x,h) is the joint PD of the annealedx) and

quenchedh) degrees of freedom for thid-particle system,
Il. THE MODEL AND THE FREE ENERGY and

We consider a SAW on a lattice. Each site visited by the _
walk represents a monomer. Two different kinds of mono- S=—kg>, P(h)InP(h) (4)
mers are placed at random along the chain, that is, we assign n
a random variable= =1 to each monomer. Ir_1 the following 5 the information entropy of the randofh-monomey se-
s=+1 will denoe a H monomer ang= —1 will denote a P q,ence, or more generally the entropy associated with the
monomer. The probability distribution®Ds of the random  qyenched disorder. A canonical variational principle holds,
variables are fixedquenched variablgsTwo monomers of namely, the equilibrium PIP(x,h) is the one that minimizes
speciess, s’ that are nonconsecutive along the chain ande \yith the constraint
come in contact, i.e., are placed on two NN sites, are as-
sumed to interact with an energy s . Empty sites represent
clusters of solvent(watep molecules, and a monomer- 2 P(x,h)="P(h). ©)
solvent interaction energys, depending on the monomer
speciess, is assigned to each monomer-solvent contact. Suclh order to move to the grand canonical ensemble, one has to
a model can be readily mapped onto a model with monomergefine the grand potential in the usual way as
monomer interactions only, but for clarity we shall treat all
interactions explicitly in the following, except in Sec. V. We ~
shall assume that the binary random variables that determine Q= P(N)[Fy—uN+kgTInP(N)], (6)
the sequence of H-P monomers are statistically independent N=0

with equal distributionsP¢ will denote the probability that a where u is the chemical potentialP(N) is the probability

monomer is of species i‘hat the system containd\ particles, andFy is the

Theh rgrg_ﬂomges.s_ Orf] the HZ se?urr]e_nce i? a fo[)m_ f(l)quenche&ifree energy for thé\-particle system. If the latter
quenched disorder: In the remainder of this section we briefly, o ity is expressed via E€3), in which all probabilities

summarize the way we shall deal with this problem. We firstare conditioned to the particle numbrand theN-particle
introduce the canonical free energy for a generic randomHamiltonian is denoted by (x,h), we obtain
system, along the lines of the procedure proposed by Morita NAE

[21] (see also Refl22]), giving then a generalization to the %

grand canonical ensemble, which is more convenient forQx= > > P(x,h,N)[ Hn(x,h) = uN+KgT In P(x,h,N)]
polymer lattice model$13]. Let us consider a finite system N=0 x.h

at fixed volume and particle numbbr (we shall not denote o

explicitly the dependence oN in the canonical ensemble +TD P(N)S, 7
Suppose thal is a set of random variables representing the N=0

quenched configuration of the systdin our case the H-P ) o )
sequence whereasc is another set of random variables rep- WhereP(x,h,N) is the joint PD of the particle numbéand
resenting the annealed degrees of freedom of the systeno$thex andh degrees of freedom, ar$g; is the information
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entropy of anN-monomer sequence, given by E@), in  an exact way, is able to impose such constraints. The joint
which the probabilities are conditioned &h Also, a grand  PD P(x,h,N), introduced in the previous section, is equiva-
canonical variational principle holds: The equilibrium joint lently expressed by the joint PB(ky,...,k\)=P(k) of the

PD P(x,h,N) is determined as the one that minimiz8s state variables of all lattice sites. The grand potential of the
with the constraint system can then be written as

> P(x,h,N)=P(h,N), (8) Q=Ek PK[H(K) —N(k) +kgTInP(k)], (13

X

equivalent to Eq(5). Let us finally notice that in our model where?(k) is a lattice Hamiltonian, including NN pair en-

H and P monomers are placed at random along the chaigrgy contributionse » and ys (as described in the previous

with no Correlation, that iS, quenched variables are Statistisectior), and |nf|n|té energy pena'ties assigned to NN pair

cally independen{with equal distributionPs). Hence the states that violate connectivity constraints.

information entropy of arN-monomer sequence is According to the Bethe approximation, the lattice state
PD P(k) can be approximated by

(i)
l_i[ Pk,

~(a-1)
: (14)

Sy=—Nkg > P.InPq, (9)
S 1

==

Pio~TI1 pik
and the grand potential can thus be written as ()

w wherell; ;, denotes a product over all NN paiid; a prod-
Q= 2 Z Px,h,N)[Hp(x,h) — &N+ kgT In P(x,h,N)], uct over all sitesp(k"’lj,) is a pair PD(i.e., the probability that
N=0 xh the NN sites,j are, respectively, in the statksk’), andp{’
(10 is a site PD(i.e., the probability that the siteis in the state
where k). Due to the fact that the interaction energffk) and the
chemical potential term-7N(k) can be written as a sum of

terms depending only on NN pair states as

T=p+kgT >, PslnPg. (12) P g ony P
s=*1

H(K)—N(K)= >, hid) 15

In the next section we shall derive the Bethe approximation ()~ ENk) %") ik 13

for the grand potential10). . ] ] )

where hﬁ'i"‘ﬁ_ must be defined in a suitable way, E@.4)

. J . .
Ill. BETHE APPROXIMATION substituted into Eq(13) yields

Let us consider a generic lattice wittf sites and coordi- n n N N N
nation numbex, and a polymer, i.e., a SAW, on the lattice. Ba~> > X plphld+inpll)
We see that defining the numbirof monomers in the lat- (L) k==ny'=—n = ' '
tice, their position, and their chemical speciésis equiva- n
lent to defining, for each lattice site, the following thing’s: —(q- 1)2 > pPinpl, (16)
whether the site is empty or visited by the walk and, in the i k=-n
latter case(ii) the configuration of the monomer on that site, _
that is, the directions of the two chain segments toward th&/here as usug=1/kgT. The above expression of the grand
previous and next monomer, afiil) the monomer species H Potential can be further simplified. First one assumes homo-
or P. It is then useful to define, for each site, a state variabl@€neity and isotropy, whence it is sufficient to evaluate the
k=—n,..., n, such thatk=0 if the site is emptyoccupied average contribution to the grand potential due to a fixed pair
by solvent, k>0 (k<0) if the site is occupied by a KP) of NN sites. Secondly, it is p(_)ssno_le to show that, in the
monomer, andk|=1,...,n if the two chain segmentgoward framework of the Bethe approximation applied to a polymer

the previous and next monomeamhoose one of the with zero stiffnesd11], each one of the local chain con-
figurations has the same probabilitywhich, however, may
q be different for H and P monomersNith respect to a fixed

n= 2) (12 pair of NN sites, say 1 and 2, it is then only necessary to

distinguish configurations of site 1 that are linkéat not
possible configurations. Thus we have transformed a polylinked) to site 2 by a chain segment, and vice versa for site 2
mer lattice system into a Potts-like model in which, to pre-with respect to site 1. We shall then consider for site 1 the
serve polymer connectivity and the self-avoiding condition,state variabl&k= —2,...,2 defined as follows=0 if the site
site state variables have to satisfy some constraints. In pais occupied by solvenk>0 (k<<0) if the site is occupied by
ticular, if sites 1 and 2 are NNs, and the configurational stat@ H (P) monomer/k| =1 if the monomer at site 1 is linked to
of site 1 is such that it is linke¢hot linked to site 2, then site 2 by a chain segmef(the two monomers are consecutive
also site 2 must be in a state linké@ubt linked to site 1. The along the chaip and|k|=2 if the monomer is not linked to
Bethe approximation, taking into account pair correlations insite 2 (site 2 is occupied by solvent or by a nonconsecutive
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TABLE |. Site states, defined with respect to a fixed NN site  TABLE Il. Pair energiedhy . : €55 denote interaction energies
(right column, and corresponding values of the state varidlaé& between monomer species’ = *; y, denote interaction energies
column. H,P monomers are denoted, respectively, By ©; between a monomer speciges = and the solvent]: is defined by
solvent(waten molecules by®. The reference NN site is denoted Ed. (11). hy =20 corresponds to pair statésk’ that violate con-
by a dot. Oblique segments denote chemical bonds in generic dRectivity constraints.
rections except the reference one.

k!
k stare k -2 -1 0 +1 +2
-2
>@ -2 € —2E © b7 —T—L o € _— E
-1 o - T T q g
[ [z
0 o -1 % -2 o0 2 =
[ I
+1 So— . 0 y.—— o 0 %0 Ve =
q q
- » R
q q
monomey. The state of site 2 can be defined in an analogous 4 » €. 7_2E o P Iz 0 € 4 pa
way by a variablek’: |k’'|=1 (|k’|=2) if the monomer at Tq q

site 2 is linked(not linked to site 1. The reduced “encod-
ing” of states is displayed in detail in Table I. The value of a
site variable does not define an elementary state any longer, 12 (12

rather a number of elementary states, that is, a degenerate Py =Py 'k - (21)
state. It is easy to verify that the degeneracy af

We have thus written an approximate grand potential per site
q- 1) 1 w as a function of only the pair probabiliti ]1;(2,), the site
k[ ) probabilities depending on them via E@$9). Let us notice
that w, as it has been derived, is actually the excess grand
potential of the polymer-solvent system with respect to pure
solvent, and the same holds for the thermodynamic quantities

that will be computed in the following. We shall omit the

Wk:

Defining the grand potential per site @as= /A in the ther-
modynamic limitNV—co, according to the above discussion
we can finally write

2 2 “excess” specification for brevity.
q (1,2 (1,2 In order to determine equilibrium properties, we have to
=_ W W Py (Bhy e +H1npys L ) : " -
po 2k:2—2 k,=272 kWi Picier (B Pici:) minimize the grand potential with respect to pair probabili-

ties. Notice that in principle we have taken into account two
q-1 (i) 1 (i) different site(margina) PDs, even if the constraint E¢R0)
T2 i=21,2 kzz Wipic Inpi”, (18 must hold. This is a trick, which allows us to write equations
that preserve the symmetry of the pair PDs E{), and to
whereq/2 is the number of NN pairs per site, the pair ener-avoid imposing the constraint explicitly. Nevertheless, we
gieshy . are those of Table I, and the site PDS) andp(z) have to take into account other constraints. First of all, the

k! . . e . .
are derived from the pair Pb(k’llf,) as marginal distributions pair PD must beby definition normalized:

2

in the following way: 2 2
2 22 Wwep =1 (22
12 TTeK=-2
p= 2 wiepid,
K'=-2
Second, it must be taken into account that the statesnd
2 +2 have been distinguished to account for different pair en-
pf): > Wkpf<1{<2r)- (190  ergy contributions and the connectivity constraint, but, as
k==2 :

previously mentioned, all local chain configurations must

have the same probability, whence
Of course, according to the homogeneity hypothesis, the last P Y

two distributions must be the same, that is, : -
pd’=pbe, (23

P =pi¥ (20 _ . .
for s= =1 andi=1,2. Finally, we should take into account
(for all k), which is implied by the symmetry of the pair PD the constraint EQ8), to fix the PD of the quenched disorder.

031803-4



BETHE APPROXIMATION FOR A HYDROPHOBIC-POLR . .. PHYSICAL REVIEW E 66, 031803 (2002

We do so in an approximate way, by fixing the average con- ‘o @ (b)
centration of the two monomer species on each site, that is, o
by imposing the constraint 159 _ x>0
-2.0 o
(i) — (i) o x>
5:2:1 SPs ms:zi-l Ps’ 29 = -25 x=0
-3.0

again fors=*=1 andi=1,2, wherem s the quenched aver-

=0
age defined by 35 *

m= sP,, (25) Pe Be
s=*1

I+

FIG. 1. Phase diagram in the plange-Bu for the three-
imensional cubic latticeq=6), in the casesn=0, equal propor-

representing the relative concentration of H monomers Wltfﬁons of H and P monomers), andm= + 1, H monomers onlyb).

r.eSp?Ct to P monomers. We.do not n(?Ed to impose the. StaJ“B_ashed(solid) lines denote continuougliscontinuous transitions.

tical independence of chemical species along the chain, bes, < 4onote tricritical points

cause it is possible to verify that it comes out naturally as a '

consequence of the fact that any pair of chemically bonded . N

monomersH-H,P-P,H-B yields the same energgee Table values, and the two regions are separated by a tricritical
mEEET Y ; oint. The polymerized phase, in the limit Bfu tending to

II). Moreover, as previously mentioned, we do not even nee

to impose the symmetry constraints E6g0) and (21), be e transition line, represents an isolated chain in solution
1 - . H T 1 +
cause they turn out to be automatically satisfied if the otheFl]' the continuous transition regiox{-0") corresponds

. - . o an extendedcoil) state, while the coexistence region cor-
constraints Eqsl23) and (24) are imposed for both sited responds to a compa@lobule state. The tricritical point®

223@’;53353223258 to equations that are symmetric underpoint) separates the two regimes. It is important to notice that

. ) . L this sort of picture implies that surface effects are neglected,
It is possible to perform numerically a minimization of

the grand potentiab [Eq. (18)], with the constraints Egs. tha.t is, (when the polymer is n the globule sthltdae nter-.
(22), (23), and (24), by means of an iterative method first action of surface monomers with the solvent is not taken into

proposed by Kikuchji24]. Let us only notice that the method a(;]count. Tg.'s question W'Ill be_ addresse_d aga_lnh n Sdecl. VI,
allows s to compute the equilibriurtpair and site PDs where we discuss our results in comparison with models at-

12 . L . . tempting to describe the effect of hydrophobicity in protein
p(k,k’)_and pi”’=p?, which give information on the micro- - ¢q14ing. In Fig. 1b) the phase diagram is displayed for the
scopic state of the system, as well as the equilibrium granﬂomopolymer casén which every monomer-monomer con-
pqtentialw itself, frpm which all other therr_nodynam.ic quan- tact yields an energy-€). The phase diagram is qualitatively
tites can be derived. We leave technical details of thesimilar but the® transition is obtained for a lower value of

method to the Appendix. Be, due to the fact that noninteracting monomers in the pre-
vious case favor the coil state.
IV. NUMERICAL RESULTS We now analyze the most significant thermodynamic

Wi tth Its of lculati bout functions, namely, the Helmholtz free energy, internal en-
€ now present the results ot a caiculation about an eXérgy, and entropy. Due to the fact that we always consider
ample of the class of systems introduced in Sec. Il. We con

trat th in which="0 | i FH excess quantities with respect to the pure solvent, it turns out
cez rg € ontne Cas%'n w r'] h_H (equa propqrtlons to ith that w, which we defined in the previous section, vanishes in
an monome_;fsan in-whic monomers nteract with -y, o pure water phase, and on the transition line as well. As a
one another with an energy, . =—¢€, with €>0. This

g ibl h h i
simple model has been considered in the literafare-16 consequence, it is possible to show by standard thermody

. o : namics thatu at the transition line coincides with the Helm-
to describe the effect of hydrophobicity on the behavior ofy, 1, free energy per monomen the infinite dilution limit.
H-P copolymers.

. Remembering Eq(18) it is easy to see that the internal en-
We compute, as an order parameter, the probabikityl g Eq18) y

() — S ) ergy per monomeu can be evaluated as
—py’=1-po that a site is occupied by a monomer of any
species, that is, the monomer volume fraction. Notice, by the 2 2
way that, due to the homogeneity condition EB0), from u=7+ a >0 wewe P hywr - (26)
now on we shall always omit the PD superscripts. Given that 2XKk="2 T, T
the stable phase is the one with the minimum grand potential,
it is possible to investigate the phase diagram of the systenThe entropy per monomer comes fratkg=S(u—"f). In
This is displayed in Fig. () in the planeBe-Bu for the  Fig. 2 we report the Helmholtz free energy, internal energy,
three-dimensional cubic lattice, corresponding to a coordinaand entropy differences with respect to the expanded coil, as
tion numberq=6. We obtain a phase transition between afunctions of Be. It can be shown analyticallywe refer to
polymerized phase, in whick>0, and a nonpolymerized Sec. V for the derivationthat in the coil phase the internal
(pure solvent phase, in whichk=0. The transition is con- energy per monomer vanishes, whereas the entropy per
tinuous for low values ofBe and discontinuous for higher monomer is
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0.0 (@ 1.0 @ 7 (b)
] 0.8 o
& 1 e ,// i
3 PR Iy -
- -~ 1 d |
3 X 0.4- i
2 0.2 .

' 1. é :'3 0.0 = ———— — T

o 1 2 3 0 1 2 3

Pe pe Be

. FIG. 2. Differences of Helmholtz free energgAf, solid line), FIG. 3. Equilibrium average local structure properties: monomer
internal energy(BAu, dashed ling and entropy(As/kg, dotted volume fractionx (solid line), monomer-monomer contact probabil-

line) per monomer of the globule phase with respect to the coility y, as defined by Eq(28) (dashed ling and, only in(a), H-H

phase, as functions de. In (a) We_havem:O, equal proportions of - a0t probabilityz, as defined by Eq29) (dotted ling. In (a) we
H and P monomers, and i) m=+1, H monomers only. havem=0, equal proportions of H and P monomers, andbinm
=+1, H monomers only.

s=kglIn(g—1). (27
_—_ The numerical value oy is not very different from the av-
The former result means t_hat a Va”'Sh”."g number Oferage density, but the difference is slightly more evident in
monomer-monomer contacts is realized, while the latter re:

flects the fact that the polymer chooses amargl equall the heteropolymer case, and indeed it becomes more impor-
T poly angl equally  iant aspe increases, unlike in the homopolymer case. Due to
probable directions at each step. Of course, this is a simpl

fied representation of an expanded coil in the Bethe a rox!t:he fact that this difference is an indicator of the correction of
rep . P . . PPrOXf e Bethe approximation to the mean-field theory, a sugges-
mation. The internal energy and entropy in the coil phase c

flon arises that the importance of the correction is greater for

also be determined numerically in p”r?‘?‘p'e: by extrapolationthe heteropolymer case. Both the above quantities are indi-
asBu tends to the second order transition line. Nevertheless :

in this region the algorithm becomes slower and slower an%ators of the compactness of the polymer. For the het-

numerical errors increase; hence the analytical results whic ropolymer, however, we need also an indicator of the order
o ' . Wt . duced by the preference of H monomers to make contacts
we derive in Sec. V are helpful. In Fig(a& it is possible to

. with one another. We choose the conditioned probabiity
see that, as expected, internal energy and entropy decreazg

) . . at a monomer in contact with a H monomer is of the same
as Be increases, signaling that the system undergoes a co becies. In terms of pair PDs we have
lapse, increasing the number of contacts between “active '
(H) monomers. It is interesting to compare the results with

the purely H homopolymer case, reported in Figh)2It can _ Py2+2

be seen that both internal energy and entropy have a slower = (29)
decrease in the heteropolymer case but, as far as entropy is P22

concerned, this is true only near the transition. This suggests s'=x1

that the heteropolymer globule tends to be more ordéied . _ _ .
have a lower entropythan the homopolymer one, due to In the coil phase region this quantity can be evaluated ana-

“selective” monomer-monomer interactions. lytically, and turns out to be
In Fig. 3 we report some parameters, related to the equi-
librium PD, that give some significant information about the 1
local structure of the system. First of all we plot the site 1= ———pg——.
4 P 1te PP /P, (30

occupancy probability, equal to the monomer volume frac-
tion x, vanishing in the coil phasén the infinite dilution
limit) and continuously increasing after thketransition. For  We again refer to Sec. V for the derivation. It is worth noting
the heteropolymer case the increase is slower, confirming thihat z is an increasing function oBe, and actually already
picture of a less abrupt transition. Secondly we present thstarts increasing from the trivial value 1(f20 monomer pref-
monomer-monomer contact probabilitydefined as the con- erencg in the coil phase. Moreover, the slope of the curve is
ditioned probability that a monomédbpf any specieshas a lower in the globule phase, evenifis still increasing. In-
certain NN site occupied by a monoméf any species  deed, this is not surprising, and the physical meaning is that

which is not consecutive along the chain: when the polymer is in a collapsed state it is more difficult
for it to rearrange monomers of different species in order to
E o satisfy energetically advantageous bonds. In a few words the
2s,2s’

model predicts that some rearrangements must take place
(29 already when the polymer is in an extended phase. This fea-
2 Pas ture is easily caught by the pair approximation, but would be
1 missed by a mean-field theory.

s=*1g/=+1

y

S==*
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V. LANDAU EXPANSION JBw Po
. . . —=—[Bu+In(g—1)]+(q—1)In—
In this section we perform a Landau expansion of the X Po,o
grand potentiakv [Eq. (18)] in powers of the monomer vol- P
ume fractionx, which is the order parameter of the system. —(a— 2 sP
e _ _ (9-2) > Psin—=, (40
This is useful to determine analytically the second order tran- s==1 Po,2s
sition and the tricritical point, which is quite a time-
consuming task, by the numerical algorithm employed to dBw . q ., Po,oP2s 25’
perform the minimization ofv. First of all we have to write Pososr o W2 Bess+In Po2xPoas’ | (41)

the grand potential as a function of only independent prob-

ability variables, which turn out to bp=p.,1+p_1=p.> Let us notice that, substituting Eq81)—(37) into Eq. (18)
+p_,, related to the monomer volume fraction Ry (w;  except in the arguments of the logarithms, and taking into
+W,)p, andp,s o, for s,s"= £ 1. Notice that, according to account Eqs(40), (41), it is possible to show that

Eq. (21), we havep,, _,=p_,.», and hence we should

consider only four independent variables. Nevertheless, we

keep the above two variables distinct to simplify the nota- Bo=5INpoo=(a=DInpotx—-
tion. Making use of all the constraints Eq®1) and (22)—
(24), of Eqgs.(19), and of the fact that some pair states are not n E E 0 IPw (42)
allowed because they violate connectivity constraints, one sF1 L, TP pgsas
easily obtains all site and pair probabilities as functions of
the independent variables: which will be useful in the following. We now set to zero the
derivatives Eqs(41), obtaining some of the necessary con-
Po=1—(w;+Ww,)p, (3)  ditions for the minimum of the grand potential,
pS: pZS: PSpi (32) p25,2s’ — e*ﬁésvs/ po'ifz'xl . (43)

Poo=1—(wy+ 2W2)p+W§S=Z+l E P2s2s's (33 This set of equations defines, through E(@3) and (35),
Ths=st four implicit functionsp,s »s(p), that allow one in principle
to determine the grand potential as a functiorpahnly. The

Pos=Ps,0=0, (34 minimum condition is then obtained by setting to zero the
right hand side of Eq(40). The implicit functionspg s/ (P)
Poaxs=P2s0=PP—Wy > Pasas s (35)  are not easy to determine, due to the fact that 4. are
’ ’ s—+1 coupled with one another. Anyway we are interested only in
the asymptotic behavior fgg— 0, which is easily verified to
Pss' = Ps',s= PsPs p/wy, (36) be
Psos' = pZS’,s:O- (37) p25,25’:eiﬁes’slpsps’pz"'o(pz)- (44)

. Let us notice that Eq(44) is sufficient to prove Eq(30),
We can use Eq35), together with Eq(26), to show that the . Do Lo
present modelqca% begmapped ontg(a 3nodel with monome}?lklng the limitp— 0. Moreover, substituting into Eq¢33)

monomer interactions only. The mapping results in the fol-and (35, we have

lowing substitutions, to be performed in Table I, p0,0=1—(W1+2W2)p+(e’BESvS’>s,er§p2+0(p2),

(45)
€ss' €55~ Vs Vs
Pos=Psp[1—(e Pes )y w,op+o(p)], (46)
75_)01
where
= = (q=2){¥s)s. (38)
~Bessy = ,e Bess’
wheres,s’=+1 and (e )s S/;ﬂ Pye : (47)
<7$>SES:+1 Ps‘)/S' (39) <eiBeS~S’>S’S/ESEl 2 PSPS/efﬁes,s’_
B =*lg=x1

(48)

In the following we shall actually study such a simplified

model. We then substitute Eq81)—(37) in the expression Finally, substituting Eqs(45), (46), and (31) into Eq. (40)
of the grand potential Eq(18), taking the derivatives with and hence into Eq42), where the last term is obviously
respect to the independent variables: o(p?), we obtain

031803-7



M. PRETTI PHYSICAL REVIEW E 66, 031803 (2002

3 VI. DISCUSSION AND CONCLUSIONS
2 globule In this paper we have generalized the pair approximation
& scheme of the CVM to a lattice random copolymer model,
1 coil with particular attention to the case of H-P copolymer. We
have also analyzed thermodynamic functidfree energy,
0_1"0' i '_0'_5' i Io!ol i '055' i '150 internal energy, entropyand parameters related to the equi-

librium (pair) PD in a particularly simple case, previously
investigated by Dill[15]. It is worth remarking on some
FIG. 4. O transition line: (B¢€)g as a function ofm. interesting issues.

First of all we observed that the entropy of the collapsed
state is considerably lower when we consider the case of H-P

m

Bw=—=[Bu+In(q—1)]x+ 2q copolymer, with respect to the case of a purely H homopoly-
mer. This is a significant effect, which can be ascribed to the
><[(q—1)—(q—2)(e‘5€svs'>svsr]x2+ o(x?), “selective” interaction between monomers of a certain spe-

(49) cies, which makes the polyme_r collapse into a more o_rdered
state. Such an entropy lowering was also observed in Ref.
which is just the required expansion. [19] in the case of a weakly H polymeand actually we
It is easy to see that, when the monomer volume fractioreXpect that this effect will be further enhanced by an increas-
x vanishes, the grand potential is zero, i.e., it is equal to thang concentration of P monomeysbut in that case it was
of pure solvent, as one could expect. Moreover, one can otccompanied by an unusual first order collapse, whereas in
serve that, if the second order term is positive, a continuougur case the transition is continuous.
transition can take place when the first order term changes In addition to the thermodynamic quantities, we have also
sign. This leads us to locate the continuous transition at ~analyzed in some detail pair correlations at thermodynamic
equilibrium. The most interesting parameter is perhaps that
Bu=—In(q—1). (500  we have denoted by, which describes quantitatively the
N o ] preference of H monomers to be in contact with monomers
Due to the fact thaj at the transition coincides with the of the same species. It turns out that it is an increasing func-
Helmholtz free energy per monomer of the isolated polymetion of the interaction parametg@e in the coil phase also. On
in solution, we can also verify that it is made up of the onlythe one hand this means that the coil phase is actually non-
entropic term Eq.(27), because Eq(44) implies that the rjvjal, because some ordering is induced by the preference
internal energy per monomer &(x*)/x=0(x) in the limit  among H monomers, even if the polymer is globally in an
x—0 and hence vanishes in the coil phase. We can alsgxtended state. On the other hand it suggests that the Bethe
observe that, if on the contrary the second order term igpproximation is able to catch this effect, which would not
negative, only a discontinuous transition can take place, in e taken into account in the hypothesis of neglecting pair
region where the first order term is positive, although wecqorrelations.

cannot locate it analytically. Anyway, we see that a vanishing  An important part of the paper has been devoted to the

second order coefficient Landau expansion, which gives information about the coil
phase and th&® point analytically. We compare the latter

(e Fess) o :E (51) result with the original work by Aguilera-Granja and Kikuchi

> g-2 [6]. They considered a homopolymer model with a

) ] _ ‘monomer-solvent interaction energywhich in our notation
determines the separation between the continuous and digreansy, =J and y_= e, =0. Using Eqs(38) and (52),

continuous transition regions, i.e., thepoint. We can solve  ne Flory parameter at th@ point turns out to be
this equation for the case of our simple test model, analyzing

the behavior of thé transition(namely, of the value oBe

where the transition takes placas a function of the param- q
eterm, related to the fraction of H monomers in the chain X@):('Bq‘])@:iln
(see Fig. 4. Form=+1 only H monomers are present and

one obtains

QO
=

(53

o]
N

The numerical values obtained by this formula are compared
g-1 in Table Il with those obtained numerically in R¢&]. The
(ﬂf)@):'nq_—z (52 small discrepancy for low values @f can probably be as-
cribed to the fact that in the cited paper numerical values are
(~ 0.2231 forq=6). Upon increasing the fraction of P computed at finite chain length. Moreover, it is easy to see
monomers, Be)e increases as well, and hence the globulethat
turns out to be less and less stable. The curve asymptotically
tends to infinity form— — 1, meaning that the purely “hy-
drophilic” polymer has no collapsed state, as could be ex- lim yo=
pected. g—

N| -

: (54)
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TABLE lIl. Comparison between th® points(in terms of Flo-  ably the reason why the maximum stability effect can be
ry’'s parametey) obtained in the present work, EG3), and in Ref.  observed even in the infinite length limit, unlike in Dill's
[6], for the H homopolymer case and for different values of themodel. Other discrepancies can be observed at high concen-

coordination numbeq. trations of P monomerdow mvalues, where we never have
an unfolded state more stable than the folded one, due to the
a Xo ' EQ. (53 Xo: Ref.[6] fact that the “equivalent homopolymer” always reaches the
4 0.8109 0.77 O point at highem values than the copolymer.
6 0.6694 0.675 Finally, we would like to note that one might expect the
3 0.6166 0.61 pqssibility of taking into account at least lodgdair) corre- .
12 05719 057 lations along the sequence, by means of the Bethe approxi-

mation. This might be of some relevance, because in the
framework of the H-P model important correlations have re-
. , ) cently been observeg@5] in sequences properly designed to

confirming the fact that Flory's theoif1 0] gives the correct  aye globular conformations with H monomers shielded by P
result in the infinite coordination lim{6]. _ _ones. Unfortunately, it turns out that imposing pair correla-

We also compare our results Wlth those obtained by Dilli;ns between contiguous monomers is simply equivalient

[15], who worked out a mean-field-like treatment of an o schempto a chemical potential shift, with no effect on

analogous model on a “spherical” lattice. To do so we recally,s single polymer properties. It might be possible to take
that in the cited paper the stability of a globular protein iSg,ch correlations into account by considering larger basic
estimated through the free energy difference between thgsiers in the spirit of the CVM. This goes beyond the scope

“ordered” collapsed state, representing the folded state, and¢ the present paper and will be the subject of a future work.
a “randomly collapsed” state, representing the unfolded one.

We assume that in the framework of our model, which does
not possess an underlying “globular” geometry, the ran- ACKNOWLEDGMENTS

domly collapsed state could be reasonably represented by the | am indebted to P. Bruscolini, C. Buzano, and A. Peliz-
ordinary collapsed state of an “equivalent homopolymer”in zola for many helpful suggestions and discussions. This
which the monomer-monomer interaction equal;, that  work was partially supported by the Italian MURST, through
is, the H-H contact energy reduced by a factor which takeshe research project “Heteropolymers and Proteins.”

into account the random arrangement of monomers. In Fig. 5

we report the free energy difference with respect to such a  AppeNDIX: NUMERICAL MINIMIZATION OE
“homopolymer” system, for different values oBe, as a

function of the parameten, related to the H monomer con- ~ As mentioned in Sec. lll, in this appendix we give the
centration. Of course it turns out that a stronger interactioriechnical details of the numerical method employed to find
corresponds to a higher stability, but the most important feaconstrained minima of the grand potential with respect to
ture is that a concentration of maximum stability is observedpair probabilitiesp(kl;(z,). According to the Lagrange multi-
as predicted by Dill's model. Above and below that concen-plier method, such minima can be found as the free minima
tration the “folded” state becomes less stable. Let us noticef another functional, namely,

that in our treatment, due to the the fact that the surface

effect is neglectedas mentioned in Sec. )Y there is no q 2 2 w2

possibility of describing a global rearrangement of H mono- Bo=fw— 5 > X WiWir P =1L

mers in the core and of hydrophilic monomers outside. Only K=m2k=—2

local rearrangements are taken into account and this is prob-

w

q . . . .
—5 2 2 Lp = ph Kk +(s—mpl’T V],
_ i=12s==*1
0.0+ (A1)
-0.1 4
02 with respect both to the pair probabilities and the Lagrange
o multipliers 7, £, and £. Setting to zero the partial de-
a -0.3 . . ~ . (1,2) .
] rivatives of Bw with respect tg, /’ gives rise to a system of
-047 equations, easily written in fixed point form
-0.5 -
(1,2 _ (1) (2) (1) (2)
; ; - - T=Wexp — Bhyw + VI + VU UL
-1.0 05 0.0 05 1.0 Pik F(= Bhe + Vi k k k)

m X (pipicha e, (A2)

FIG. 5. Difference of Helmholtz free energy per monomer
(BAf) with respect to the “equivalent homopolymer” as a function
of m, for different values ofBe. Thin dashed lines mark th®
transitions of the “equivalent homopolymer.” TH@ transitions of () (i)
the copolymer take place where the free energy differences vanish. Ue=J 5\k\yl(k_ m), (A3)

where the unknown parametér§’, V), and are related
to the Lagrange multipliers in the following way:
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. Ok 1— O ()
(i) (i) Ol 9]K[.2 expCgwg)
VK (A = ey ™ (#8
—2
erxp(c+ q—) (A5) exp(—KViwy)
| pil= s (A9)

| | | " exp(— KU Twy) 2
(sgn denotes thsign function returning+1, —1, or O if its
argument is, respectively, greater than, less than, or equal §¢ qyrse we would like the new estimates of site probabili-

zero. The numerical problem is solved as follows. Equationyjes 14 safisfy the constraint E(R3) and hence we impose
(A2) is used as elementary iteration of a fixed point method,

usually called the natural iteration methi@8]. Nonetheless, B —py) (AL0)
we need to determing{’, V", andW at each iteration, in s~ Pas:

order to satisfy the constraints. We do so by a nested iterativ. . . . B .
method, involving the following steps. \?\/e then easily obtain EqA6) with «=1. In this way the

(i) _ (i) — _ . ; _ iterative procedure usually does not converge, and this is the
(1) Sethy'=0, JH=0, andW=1 (Wis a simple nor reason why we introduce the relaxation parameterl, ad-
N Y ) (1,2) justed empirically. A similar derivation can be performed for
(2) Compute a frial “next step” estimate of, ;" by  Eq (a7). By means of Eqs(A2), (19), and (A3) we can

means of Eq(A2). o o write, with analogous meaning of the symbols,
(3) Adapt the Lagrange multipliers by the iterative equa-

malization constant

tions i
) (g—
) i~ ST ST b, (A1)
() (i) WiW; s s exqj<')(5_m)] S
KV =K« In—, (AB)
S S witw,  ph
Hence, imposing the constraint EQ4), that is,
. : 1 pYy
TW=7g0—qa| =log—+—tanh *m|, _ _
27"pl > sp’=m X p, (A12)
(A?) s=*1 s==*1
where carets denote the new estimates ang a “relax-  gne easily obtains EqA7) with a=1.
ation” parameter, chosen empiricallyr~0.4 is usually a It is finally possible to show that, once the iterative pro-
good choicg » ‘ o _ cedure has reached convergence, one has
(4 If the distances| K-k and | 70— 70| are
larger than some tolerangee., if the estimate opﬁ’l,’f,) does q
not satisfy the constraints within the tolerapogo to step 2. Bo= 2 Inw, (A13)

(5) Determine)V by normalization.

The nested iteration method, first applied by Kikui@4],  \yhich allows us to evaluate easily the equilibrium grand po-
proves to converge quite easily for this problem. Let us NOyenia| per site. Let us also notice that, if we start the proce-
tice that Eqs.(A6) and (A7) are derived in a nonrigorous qre with a translationally invariarthat is, independent of
way, although following precise criteria. With=1,2 ands  j) pp and with guess values of the Lagrange multipliers
==1, letkK{’ andK{" be, respectively, the “new” and the independent of as well, the whole iterative procedure is
“old” estimates of the Lagrange multipliers used to imposeindependent of the site index. This means that actually it is
the constraint Eq(23), andp”, andp{’ (p$) andp$?) the  not necessary to define two different sets of Lagrange multi-
corresponding estimates of the site probabilities, evaluategliers (for i=1,2), but only one is sufficient. We can then
by Eg. (A2) and Egs.(19). Taking into account also Eq. remove the superscripts from all Lagrange multipliers and

(A4), it is easy to show that related parameters.
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